Subject:	应用文档	AN21025 Rev 1.1 20120716
Model Name:	CP2136B1、CP2166 兼容设计应用指南	

CP2136、 CP2166 兼容设计应用指南

本文介绍了采用低成本、高效率的白光驱动芯片 CP2136 兼容/替换 CP2166 的实现方法。

1 CP2136 与 CP2166 对比

CP2136 和 CP2166 都是自适应切换电荷泵型 LED 驱动器, 其主要区别如下:

- (1) CP2136 是 x1/x2 倍自适应切换,CP2166 是 x1/x1.5 适应切换,分别可以驱动多达 6 颗白色 LED 灯。
 - (2) CP2136 可提供每路 20mA 的电流, CP2166 最大可以提供 27mA 的电流。
 - (3) 均采用一线脉冲调光, CP2136 采用 16 级, 而 CP2166 采用 32 级。
- (4)效率方面, CP2136 在输入电压为 3. 3V 时切换到 2X 模式, CP2166 在输入电压为 3. 6V 时切换到 1. 5X 模式, CP2136 在主要电压工作区间(3. 3V-4. 3V), 效率比 CP2166 更高, 从而延长电池工作时间。

1.1 封装方式

CP2136 和 CP2166 的管脚对比如下图所示:

2 2 12 10 6 VOUT VIN 13. 8_ **PGND** AGND 14 [_7_ GND 15 6 D1 ΕN <u>__5_</u> D2 NC 16

QFN33-16L Package (Top View)

图 1 CP2136 管脚分布图

D5

4

D3

8

QFN33-16L Package (Top View)

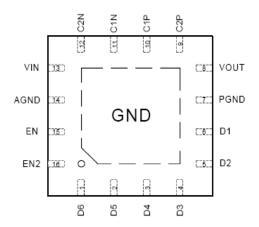
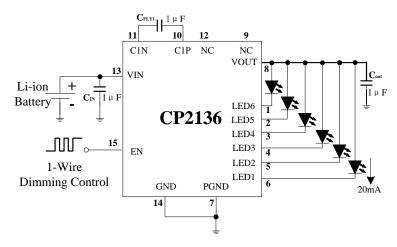
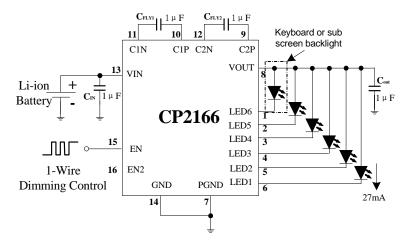



图 2 CP2166 管脚分布图


对于 CP2136 的 9、12 脚为 NC,比 CP2166 少一个外部电荷泵电容;对于 CP2166 的 16 脚为 EN2, EN2 引脚作 LED 灯副屏控制时使用,当用于主屏控制时,EN2 引脚悬空或是接地;当用于副屏控制时,EN2 引脚拉高。综上所述,CP2136 在硬件上可完全替代 CP2166。

1.2 CP2136 和 CP2166 原理图兼容设计

(1) CP2136 在应用 6 颗白光 LED 时的原理图:

(2) CP2166 在应用 6 颗白光 LED 时的原理图:

兼容性设计说明:

从以上两图可以看出,CP2136 在硬件上完全可以代替 CP2166。将 CP2166的 9、12 脚上的电容取下即可,通过 EN 脚实现一线脉冲调光;由于调光级数不同,需要对软件行一定的修改。

2. CP2136 替代 CP2166 的方法

针对单屏幕的 6 颗灯应用, CP2136 在硬件上可完全替代 CP2166, 但是调光时由于调光 级数和电流都存在差异, 因此需要在软件中做相应的修改。

2.1 调光级数真值表对比

代码	电流值 (mA)	代码	电流值 (mA)	
1	20. 0	9	3. 24	
2	16. 0	10	2. 59	
3	12. 8	11	1. 93	
4	10. 2	12	1. 65	
5	8. 02	13	1. 32	
6	6. 43	14	0. 99	
7	5. 12	15	0. 67	
8	4. 18	16	0.34	

表 1 CP2136 调光级数真值表

代码	电流值 (mA)	代码	电流值 (mA)	代码	电流值 (mA)	代码	电流值 (mA)
1	0.01	9	1.8	17	4.6	25	11.7
2	0.2	10	2. 2	18	5.0	26	13. 5
3	0.3	11	2. 6	19	5. 4	27	15. 4
4	0.6	12	2. 7	20	5.8	28	17. 0
5	0.7	13	3. 1	21	6.3	29	19. 0
6	0.9	14	3. 4	22	8.4	30	21.6
7	1.1	15	3. 6	23	9.0	31	24. 5
8	1.6	16	4. 1	24	11. 0	32	27. 2

表 2 CP2166 调光级数真值表

2.2 CP2136 一线脉冲调光时序

EN 引脚时序

EN 引脚的第一个上升沿启动芯片,这时 LED 的电流被设置为 20mA。当采用脉冲计数调光方式来设置 LED 的工作电流时,调光脉冲高电平时间推荐大于 $0.5 \mu s$ (T_H);低电平时间应该大于 $0.5 \mu s$ (T_L),同时要小于 $300 \mu s$,以保证不会超出关断延时(T_{OFF})。调整 LED 到达预期亮度后,EN 引脚保持高电平,LED 工作在设定电流下。时序如图所示。

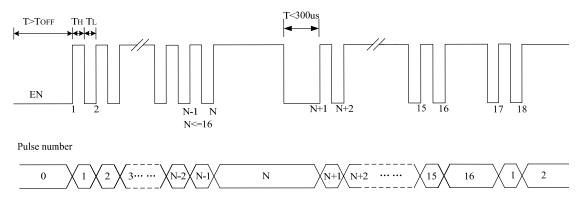


图 3 CP2136 一线脉冲计数调光时 EN 的时序

2.3 CP2166 一线脉冲调光时序

EN 引脚时序

EN 引脚的第一个上升沿启动芯片,这时 LED 的电流被设置为 0.01mA。当采用脉冲计数调光方式来设置 LED 的工作电流时,调光脉冲高电平时间推荐大于 $0.2\,\mu\,s(T_{HI})$,同时要小于 $200\,\mu\,s$;低电平时间应该大于 $0.2\,\mu\,s(T_{LO})$,同时要小于 $200\,\mu\,s$ 。调整 LED 到达预期亮度后,EN 引脚保持高电平经过时间 T_{LAT} 后,LED 工作在设定电流下。当 EN 引脚的持续低电平时间大于关断延时 T_{OFF} ,芯片进入到关机状态,静态电流减小为 $0.1\,\mu\,A$ 。

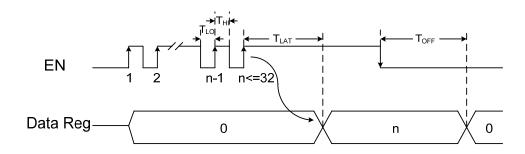


图 4 CP2166 一线脉冲计数调光时 EN 的时序